首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   87016篇
  免费   16545篇
  国内免费   9100篇
化学   59846篇
晶体学   870篇
力学   5621篇
综合类   526篇
数学   10126篇
物理学   35672篇
  2024年   97篇
  2023年   2001篇
  2022年   2019篇
  2021年   2844篇
  2020年   3921篇
  2019年   3490篇
  2018年   3112篇
  2017年   2774篇
  2016年   4485篇
  2015年   4183篇
  2014年   5136篇
  2013年   6578篇
  2012年   8110篇
  2011年   8476篇
  2010年   5595篇
  2009年   5427篇
  2008年   5828篇
  2007年   5105篇
  2006年   4798篇
  2005年   3844篇
  2004年   2956篇
  2003年   2271篇
  2002年   1967篇
  2001年   1751篇
  2000年   1538篇
  1999年   1780篇
  1998年   1540篇
  1997年   1527篇
  1996年   1516篇
  1995年   1311篇
  1994年   1144篇
  1993年   987篇
  1992年   855篇
  1991年   780篇
  1990年   640篇
  1989年   502篇
  1988年   370篇
  1987年   305篇
  1986年   322篇
  1985年   261篇
  1984年   149篇
  1983年   117篇
  1982年   100篇
  1981年   57篇
  1980年   42篇
  1979年   11篇
  1974年   1篇
  1964年   3篇
  1957年   31篇
  1922年   1篇
排序方式: 共有10000条查询结果,搜索用时 93 毫秒
991.
In this study, a simple method was designed to prepare ordered mesoporous carbons embedded with molybdenum without any extreme conditions. We prepared three different ordered molybdenum carbide materials with mesoporous structures to explore the influence of the structure of molybdenum-based materials on the HER catalytic efficiency. The ordered mesoporous molybdenum carbide catalysts (CMK-3-MoCx, fCMK-3-MoCx, CMK-8-MoCx) were characterized by SEM, TEM, XRD, nitrogen adsorption-desorption and XPS. The HER is catalyzed efficiently on the three electrocatalysts, fCMK-3-MoCx shows the best HER electro-catalytic performance with a small onset potential of −0.06 V vs. RHE, a low tafel slope of 66 mV dec−1 and a small over-potential value of 89 mV at 10 mA cm−2. This excellent performance on HER is due to its high specific surface area and highly ordered mesoporous structure that resulted in excellent proton transport efficiency and high electron transfer rate. Our results provide a new research direction for the application of flat ordered mesoporous structures in catalysis.  相似文献   
992.
Gel polymer electrolytes (GPEs) incorporate both the high ionic conductivity of organic liquid electrolyte and the high safety performance of all-solid-state electrolytes (ASSEs), greatly improving the electrochemical performance of solid polymer electrolytes (SPEs). However, the practical application of GPEs is still limited by inferior interface compatibility, lithium dendrites, etc. Herein, we prepared GPEs based on poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) further co-blended the two-dimensional sheet inorganic filler hectorite and poly(methyl methacrylate) (PMMA) to improve the mechanical and electrochemical properties of the GPEs. When the content of PMMA and hectorite is optimal, this GPEs have an ionic conductivity of 1.06×10−3 S cm−1 and outstanding lithium symmetric cells cycle time of more than 3000 h, indicating that the introduction of filler effectively inhibits the growth of lithium dendrites at room temperature. Moreover, the GPEs adopt a relatively simple solution casting method to provide a fresh idea for the synthesis of high-performance GPEs.  相似文献   
993.
A ferrocene surfactant can be switched between single and double head form (FcN+C12/Fc+N+C12) triggered by redox reaction. FcN+C12 can neither stabilize an O/W emulsion alone nor an oil-in-dispersion emulsion in combination with alumina nanoparticles due to the steric hindrance of the ferrocene group. However, such steric hindrance can be overcome by increasing the charge density in Fc+N+C12, so that oil-in-dispersion emulsions can be co-stabilized by Fc+N+C12 and alumina nanoparticles at very low concentrations (1×10−7 M (≈50 ppb) and 0.001 wt %, respectively). Not only can reversible formation/destabilization of oil-in-dispersion emulsions be achieved by redox reaction, but also reversible transformation between oil-in-dispersion emulsions and Pickering emulsions can be obtained through reversing the charge of alumina particles by adjusting the pH. The results provide a new protocol for the design of surfactants for stabilization of smart oil-in-dispersion emulsions.  相似文献   
994.
The electrochromic detection of latent fingermarks on polished or unpolished, flat or curved metal surfaces is described using electrochromic material, 1,1’-dibenzyl-4,4’-bipyridinium dichloride. The surface area covered by fingermarks acts as an insulating mask, causing 1,1’-dibenzyl-4,4’-bipyridinium dichloride to change color and produce inversed images of the fingermark. By changing the applied potential, the optical properties of 1,1’-dibenzyl-4,4’-bipyridinium dichloride can be continuously and reversibly adjusted to optimize the visual contrast of fingermarks, so as to realize the detection of latent fingermarks on stainless steel surface. It is demonstrated that the fabricated electrochromic devices can detect the fingermarks on these types of surfaces within twenty seconds at −1.0∼−2.0 V. This work can qualify as a tangible improvement in fingermark detection of the natural fingermarks on the never-cleaned (more than 3 years) and curved surfaces of daily-used container, e. g. cup, and the handle of cleaning tool, mop.  相似文献   
995.
For sensitive analysis of cancer biomarker carcinoembryonic antigen (CEA), an amperometric sandwich-type aptasensor is proposed based on a signal amplification strategy of Au@Pt bimetallic nanoprobes. As the excellent catalytic activity to hydrogen peroxide (H2O2), core-shell Au@Pt nanoparticles are employed as nanoprobes by conjugating directly with the secondary aptamer of CEA (Apt-II). Due to the synergic recognition effect of dual aptamers and the excellent catalytic activity of nanoprobes, this amperometric sandwich-type aptasensor for CEA exhibits high specificity and good sensitivity with a limit of detection of 0.31 ng/mL, along with a wide linear range from 0.1 ng/mL to 100 ng/mL.  相似文献   
996.
Multiplexed solid-contact ion-selective electrodes (SCISEs) are fabricated using printed circuit board (PCB) and mesoporous carbon black (MCB) as ion-to-electron transducer (solid contact). Four sensor configurations were examined and showed that in addition to MCB, the sensor configuration plays crucial role in the stability of the potential response. The enhanced sensor stability was also linked with suppression of transmembrane flux of water. The sensors exhibited near-Nernstian sensitivity (58.1 mV/dec for K+ ISEs and −55.1 mV/dec for NO3- ISEs), low detection limits (1.5–2.2 μM), and good short-term stability (∼0.1 mV/min). Sensors can be stored dry and used without preconditioning. This work demonstrates a promising approach to combining PCB technology and carbon black for large-scale production of low cost ISEs for point-of-care testing, wearables, or in situ field measurements.  相似文献   
997.
Developing porous materials for C3H6/C3H8 separation faces the challenge of merging excellent separation performance with high stability and easy scalability of synthesis. Herein, we report a robust Hofmann clathrate material (ZJU-75a), featuring high-density strong binding sites to achieve all the above requirements. ZJU-75a adsorbs large amount of C3H6 with a record high storage density of 0.818 g mL−1, and concurrently shows high C3H6/C3H8 selectivity (54.2) at 296 K and 1 bar. Single-crystal structure analysis unveil that the high-density binding sites in ZJU-75a not only provide much stronger interactions with C3H6 but also enable the dense packing of C3H6. Breakthrough experiments on gas mixtures afford both high separation factor of 14.7 and large C3H6 uptake (2.79 mmol g−1). This material is highly stable and can be easily produced at kilogram-scale using a green synthesis method, making it as a benchmark material to address major challenges for industrial C3H6/C3H8 separation.  相似文献   
998.
Developing a highly stable and dendrite-free zinc anode is essential to the commercial application of zinc metal batteries. However, the understanding of zinc dendrites formation mechanism is still insufficient. Herein, for the first time, we discover that the interfacial heterogeneous deposition induced by lattice defects and epitaxial growth limited by residual stress are intrinsic and critical causes for zinc dendrite formation. Therefore, an annealing reconstruction strategy was proposed to eliminate lattice defects and stresses in zinc crystals, which achieve dense epitaxial electrodeposition of zinc anode. The as-prepared annealed zinc anodes exhibit dendrite-free morphology and enhanced electrochemical cycling stability. This work first proves that lattice defects and residual stresses are also very important factors for epitaxial electrodeposition of zinc in addition to crystal orientation, which can provide a new mechanism for future researches on zinc anode modification.  相似文献   
999.
Adsorptive separation is an energy-efficient alternative, but its advancement has been hindered by the challenge of industrially potential adsorbents development. Herein, a novel ultra-microporous metal-organic framework ZU-901 is designed that satisfies the basic criteria raised by ethylene/ethane (C2H4/C2H6) pressure swing adsorption (PSA). ZU-901 exhibits an “S” shaped C2H4 curve with high sorbent selection parameter (65) and could be mildly regenerated. Through green aqueous-phase synthesis, ZU-901 is easily scalable with 99 % yield, and it is stable in water, acid, basic solutions and cycling breakthrough experiments. Polymer-grade C2H4 (99.51 %) could be obtained via a simulating two-bed PSA process, and the corresponding energy consumption is only 1/10 of that of simulating cryogenic distillation. Our work has demonstrated the great potential of pore engineering in designing porous materials with desired adsorption and desorption behavior to implement an efficient PSA process.  相似文献   
1000.
Chiral sulfones are recurrent motifs in pharmaceuticals and bioactive molecules. Although chemical methods have been developed to afford α- or β- chiral sulfones, these protocols rely heavily on the pre-synthesis of structurally complicated starting materials and chiral metal complexes. Herein, we described a photoenzymatic approach for the radical-mediated stereoselective hydrosulfonylation. Engineered variants of ene reductases provide efficient biocatalysts for this transformation, enabling to achieve a series of β-chiral sulfonyl compounds with high yields (up to 92 %) and excellent e.r. values (up to 99 : 1).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号